Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Pestic Biochem Physiol ; 201: 105849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685233

RESUMO

Beta-cypermethrin (ß-CYP) consists of four chiral isomers, acting as an environmental estrogen and causing reproductive toxicity, neurotoxicity, and dysfunctions in multiple organ systems. This study investigated the toxic effects of ß-CYP, its isomers, metabolite 3-phenoxybenzoic acid (3-PBA), and 17ß-estradiol (E2) on HTR-8/SVneo cells. We focused on the toxic mechanisms of ß-CYP and its specific isomers. Our results showed that ß-CYP and its isomers inhibit HTR-8/SVneo cell proliferation similarly to E2, with 100 µM 1S-trans-αR displaying significant toxicity after 48 h. Notably, 1S-trans-αR, 1R-trans-αS, and ß-CYP were more potent in inducing apoptosis and cell cycle arrest than 1R-cis-αS and 1S-cis-αR at 48 h. AO/EB staining and flow cytometry indicated dose-dependent apoptosis in HTR-8/SVneo cells, particularly at 100 µM 1R-trans-αS. Scratch assays revealed that ß-CYP and its isomers variably reduced cell migration. Receptor inhibition assays demonstrated that post-ICI 182780 treatment, which inhibits estrogen receptor α (ERα) or estrogen receptor ß (ERß), ß-CYP, its isomers, and E2 reduced HTR-8/SVneo cell viability, whereas milrinone, a phosphodiesterase 3 A (PDE3A) inhibitor, increased viability. Molecular docking studies indicated a higher affinity of ß-CYP, its isomers, and E2 for PDE3A than for ERα or ERß. Consequently, ß-CYP, its isomers, and E2 consistently led to decreased cell viability. Transcriptomics and RT-qPCR analyses showed differential expression in treated cells: up-regulation of Il24 and Ptgs2, and down-regulation of Myo7a and Pdgfrb, suggesting the PI3K-AKT signaling pathway as a potential route for toxicity. This study aims to provide a comprehensive evaluation of the cytotoxicity of chiral pesticides and their mechanisms.


Assuntos
Apoptose , Piretrinas , Humanos , Piretrinas/toxicidade , Piretrinas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Simulação de Acoplamento Molecular , Estradiol/farmacologia , Proliferação de Células/efeitos dos fármacos , Inseticidas/toxicidade , Inseticidas/farmacologia , Inseticidas/química , Isomerismo , Movimento Celular/efeitos dos fármacos , Benzoatos/farmacologia , Benzoatos/química , Estereoisomerismo , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
2.
Pestic Biochem Physiol ; 200: 105844, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582571

RESUMO

Enzymes have attracted considerable scientific attention for their crucial role in detoxifying a wide range of harmful compounds. In today's global context, the extensive use of insecticides has emerged as a significant threat to the environment, sparking substantial concern. Insects, including economically important pests like Helicoverpa armigera, have developed resistance to conventional pest control methods through enzymes like carboxyl/cholinesterases. This study specifically focuses on a notable carboxyl/cholinesterase enzyme from Helicoverpa armigera (Ha006a), with the goal of harnessing its potential to combat environmental toxins. A total of six insecticides belonging to two different classes displayed varying inhibitory responses towards Ha006a, thereby rendering it effective in detoxifying a broader spectrum of insecticides. The significance of this research lies in discovering the bioremediation property of Ha006a, as it hydrolyzes synthetic pyrethroids (fenvalerate, λ-cyhalothrin and deltamethrin) and sequesters organophosphate (paraoxon ethyl, profenofos, and chlorpyrifos) insecticides. Additionally, the interaction studies between organophosphate insecticides and Ha006a helped in the fabrication of a novel electroanalytical sensor using a modified carbon paste electrode (MCPE). This sensor boasts impressive sensitivity, with detection limits of 0.019 µM, 0.15 µM, and 0.025 µM for paraoxon ethyl, profenofos, and chlorpyrifos, respectively. This study provides a comprehensive biochemical and biophysical characterization of the purified esterase Ha006a, showcasing its potential to remediate different classes of insecticides.


Assuntos
Clorpirifos , Inseticidas , Mariposas , Organotiofosfatos , Paraoxon/análogos & derivados , Piretrinas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Carboxilesterase/metabolismo , Helicoverpa armigera , Piretrinas/farmacologia , Piretrinas/metabolismo , Colinesterases , Resistência a Inseticidas
3.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582836

RESUMO

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Assuntos
Anopheles , Inseticidas , Malária , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Organofosfatos/farmacologia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Perfilação da Expressão Gênica
4.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38618721

RESUMO

The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to ß-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.


Assuntos
Microbioma Gastrointestinal , Resistência a Inseticidas , Piretrinas , Espécies Reativas de Oxigênio , Tephritidae , Animais , Espécies Reativas de Oxigênio/metabolismo , Piretrinas/farmacologia , Piretrinas/metabolismo , Resistência a Inseticidas/genética , Tephritidae/microbiologia , Tephritidae/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactobacillales/genética , Lactobacillales/metabolismo , Lactobacillales/efeitos dos fármacos , Lactobacillales/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus/efeitos dos fármacos , Glutationa Transferase/genética , Glutationa Transferase/metabolismo
5.
Vet Parasitol ; 327: 110121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286058

RESUMO

The drug resistance of poultry red mites to chemical acaricides is a global issue in the control of the mites, which presents an ongoing threat to the poultry industry. Though the increased production of detoxification enzymes has been frequently implicated in resistance development, the overexpression mechanism of acaricide-resistant related genes in mites remains unclear. In the present study, it was observed that the transcription factor Cap 'n' Collar isoform-C (CncC) and its partner small muscle aponeurosis fibromatosis (Maf) were highly expressed in resistant strains compared to sensitive strains under the stress of beta-cypermethrin. When the CncC/Maf pathway genes were down-regulated by RNA interference (RNAi), the expression of the ABC transporter genes was down-regulated, leading to a significant increase in the sensitivity of resistant strains to beta-cypermethrin, suggesting that CncC/Maf played a crucial role in mediating the resistance of D.gallinae to beta-cypermethrin by regulating ABC transporters. Furthermore, it was observed that the content of H2O2 and the activities of peroxidase (POD) and catalase (CAT) enzymes were significantly higher in resistant strains after beta-cypermethrin stress, indicating that beta-cypermethrin activates reactive oxygen species (ROS). In ROS scavenger assays, it was found that the expression of CncC/Maf significantly decreased, along with a decrease in the ABC transporter genes. The present study showed that beta-cypermethrin seemed to trigger the outbreak of ROS, subsequently activated the CncC/Maf pathway, as a result induced the ABC transporter-mediated resistance to the drug, shedding more light on the resistance mechanisms of D.gallinae to pyrethroids.


Assuntos
Acaricidas , Ácaros , Piretrinas , Animais , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Piretrinas/farmacologia , Acaricidas/farmacologia , Ácaros/genética , Transportadores de Cassetes de Ligação de ATP/genética
6.
Pest Manag Sci ; 80(2): 433-441, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37721042

RESUMO

BACKGROUND: Pyrethroids are synthetic insecticides with low mammalian toxicity and broad-spectrum activity across insects. One major challenge with pyrethroids is their perceived repellency. This perception can influence decisions made by pest control operators, especially when insecticides are used to reduce insect entry into or movement within structures. One major indoor pest that has been repeatedly shown to be repelled by some pyrethroids is the German cockroach, Blattella germanica. However, most experiments evaluating pyrethroid repellency in the German cockroach have used end-point assays, which do not provide information on the movement that led to the final position. Therefore, we evaluated the kinetic behavioral response of field-collected German cockroaches to five pyrethroid-based products and their active ingredients (A.I.) in open behavioral arenas using advanced video tracking software. In addition, in an effort to compare our free-moving experiments with end-point assays, we evaluated sheltering behavior using two-choice harborage arrestment assays where German cockroaches were provided a choice between pyrethroid-treated and untreated shelters. RESULTS: All pyrethroid-formulated products and their respective A.I.'s failed to affect field-collected German cockroach movement behavior in free-moving assays, while positive controls (DEET, corn mint oil) resulted in reduced time spent by German cockroaches in treated areas. However, despite their willingness to move over pyrethroids-treated surfaces, field-collected German cockroaches displayed a reduced propensity to arrest on pyrethroids treated tents. CONCLUSION: While most pyrethroids/pyrethroid-formulated products affected German cockroach arrestment, pyrethroids and pyrethroid-formulated products failed to change German cockroach movement behavior in free-moving assays. These results indicate the pyrethroids tested act as contact irritants rather than true-spatial repellents on field-collected German cockroaches. This distinction is critical to refining pest management strategies involving pyrethroids. © 2023 Society of Chemical Industry.


Assuntos
Blattellidae , Baratas , Repelentes de Insetos , Inseticidas , Piretrinas , Animais , Piretrinas/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas , Repelentes de Insetos/farmacologia , Mamíferos
7.
Parasit Vectors ; 16(1): 447, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042818

RESUMO

BACKGROUND: Taiwan's warm and humid climate and dense population provide a suitable environment for the breeding of pests. The three major urban insects in Taiwan are house flies, cockroaches, and mosquitoes. In cases where a disease outbreak or high pest density necessitates chemical control, selecting the most effective insecticide is crucial. The resistance of pests to the selected environmental insecticide must be rapidly assessed to achieve effective chemical control and reduce environmental pollution. METHODS: In this study, we evaluated the resistance of various pests, namely, house flies (Musca domestica L.), cockroaches (Blattella germanica L. and Periplaneta americana), and mosquitoes (Aedes aegypti and Ae. albopictus) against 10 commonly used insecticides. Rapid insecticide resistance bioassays were performed using discriminating doses or concentrations of the active ingredients of insecticides. RESULTS: Five field strains of M. domestica (L.) are resistant to all 10 commonly used insecticides and exhibit cross- and multiple resistance to four types of pyrethroids and three types of organophosphates, propoxur, fipronil, and imidacloprid. None of the five field strains of P. americana are resistant to any of the tested insecticides, and only one strain of B. germanica (L.) is resistant to permethrin. One strain of Ae. albopictus is resistant to pirimiphos-methyl, whereas five strains of Ae. aegypti exhibit multiple resistance to pyrethroids, organophosphates, and other insecticides. CONCLUSIONS: In the event of a disease outbreak or high pest density, rapid insecticide resistance bioassays may be performed using discriminating doses or concentrations to achieve precise and effective chemical control, reduce environmental pollution, and increase control efficacy.


Assuntos
Aedes , Baratas , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Resistência a Inseticidas , Taiwan , Piretrinas/farmacologia , Organofosfatos/farmacologia , Bioensaio
8.
J Med Entomol ; 60(6): 1350-1356, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963276

RESUMO

Because of the increased interest in plant essential oils (PEO) for both home pest control and personal bite protection, the ability of fir needle (Abies balsamea) oil to synergize the 1-h knockdown and 24-h toxicity of 9 different synthetic insecticides was evaluated. Fir needle oil strongly synergized knockdown of the neonicotinoids, clothianidin, and thiamethoxam (between 16- and 24-fold), as well as natural pyrethrins (12-fold), but had less effect with organophosphates and fipronil. For 24-h mortality, only pirimiphos-methyl was strongly synergized by fir needle oil pretreatment (18-fold). Chemical analysis and testing identified delta-3-carene is the most bioactive constituent, producing synergism similar to that of the whole oil. In fact, this constituent synergized the 24-h mortality of clothianidin to a higher degree than fir needle oil itself (4.9-fold vs. 2.4-fold). Synergism is unlikely to be mediated by effects on the nervous system, as fir needle oil caused no change in mosquito central nervous system firing at 100 ppm and did not synergize an inactive concentration of natural pyrethrins (10 nM). To better understand fir needle oil effects, we evaluated the ability of pretreatment with this oil to impact Aedes aegypti monooxygenase degradation of a model substrate, 7-ethoxycoumarin. Interestingly, both fir needle oil and delta-3-carene caused a significant increase in metabolic degradation of 7-ethoxycoumarin, perhaps indicating they upregulate oxidative metabolic processes. Such an action would explain why fir needle oil enhances knockdown, but not 24-h mortality for most of the insecticides studied here, whereas increased bioactivation would explain the synergism of pirimiphos-methyl toxicity.


Assuntos
Abies , Aedes , Inseticidas , Óleos Voláteis , Pinaceae , Piretrinas , Animais , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Pinales , Óleos de Plantas/farmacologia , Piretrinas/farmacologia , Larva
9.
PLoS Negl Trop Dis ; 17(11): e0011737, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37976311

RESUMO

BACKGROUND: The standard operating procedure for testing the susceptibility of adult mosquitoes to neonicotinoid or butenolide insecticides recommends using a vegetable oil ester (Mero) as a surfactant. However, there is growing evidence that this adjuvant contains surfactants that can enhance insecticide activity, mask resistance and bias the bioassay. METHODOLOGY/PRINCIPAL FINDINGS: Using standard bioassays, we tested the effects of commercial formulations of vegetable oil-based surfactants similar to Mero on the activity of a spectrum of active ingredients including four neonicotinoids (acetamiprid, clothianidin, imidacloprid and thiamethoxam) and two pyrethroids (permethrin and deltamethrin). We found that three different brands of linseed oil soap used as cleaning products drastically enhanced neonicotinoid activity in Anopheles mosquitoes. At 1% (v/v), the surfactant reduced the median lethal concentration, LC50, of clothianidin more than 10-fold both in susceptible and in resistant populations of Anopheles gambiae. At 1% or 0.5% (v/v), linseed oil soap restored the susceptibility of adult mosquitoes fully to clothianidin, thiamethoxam and imidacloprid and partially to acetamiprid. By contrast, adding soap to the active ingredient did not significantly affect the level of resistance to permethrin or deltamethrin suggesting that vegetable oil-based surfactants specifically enhance the potency of some classes of insecticides. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that surfactants are not inert ingredients, and their use in susceptibility testing may jeopardize the ability to detect resistance. Further research is needed to evaluate the potential, the limitations and the challenges of using some surfactants as adjuvants to enhance the potency of some chemicals applied in mosquito control.


Assuntos
Culicidae , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Permetrina/farmacologia , Tiametoxam , Tensoativos/farmacologia , Óleos de Plantas , Óleo de Semente do Linho , Sabões/farmacologia , Resistência a Inseticidas , Neonicotinoides/farmacologia , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Adjuvantes Imunológicos/farmacologia , Mosquitos Vetores
10.
Pestic Biochem Physiol ; 196: 105637, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945236

RESUMO

Bifenthrin is one of the widely used synthetic pyrethroid insecticides, employed for various purposes worldwide. As lipophilic pyrethroids can easily bind to soil particles, which is why their residues are detected in various environments. Consequently, the toxicity of bifenthrin to non-target organisms can be regarded as an environmental concern. The toxic effects of bifenthrin have been studied in various animal models and cell lines; however, its toxic effects on cattle remain unclear. In particular, gaining insights into the toxic effects of bifenthrin on the mammary lactation system is crucial for the dairy industry. Therefore, we proceeded to investigate the toxic effects of bifenthrin on the bovine mammary epithelial cells (MAC-T cells). We established that bifenthrin inhibited cell proliferation and triggered apoptosis in MAC-T cells. Additionally, bifenthrin induced mitochondrial dysfunction and altered inflammatory gene expression by disrupting mitochondrial membrane potential (MMP) and generating excessive reactive oxygen species (ROS). We also demonstrated that bifenthrin disrupted both cytosolic and mitochondrial calcium ion homeostasis. Furthermore, bifenthrin altered mitogen-activated protein kinase (MAPK) signaling cascades and downregulated casein-related genes. Collectively, we confirmed the multiple toxic effects of bifenthrin on MAC-T cells, which could potentially reduce milk yield and quality.


Assuntos
Cálcio , Piretrinas , Feminino , Bovinos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Células Epiteliais , Piretrinas/farmacologia , Homeostase , Apoptose
11.
PLoS One ; 18(9): e0291755, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729177

RESUMO

BACKGROUND: Long-lasting insecticidal bed nets (LLINs) are a key measure for preventing malaria and their evaluation is coordinated by the World Health Organization Pesticide Evaluation Scheme (WHOPES). LifeNet® was granted WHOPES time-limited interim recommendation in 2011 after successful Phase I and Phase II evaluations. Here, we evaluated the durability and community acceptance of LifeNet® in a Phase III trial from June 2014 to June 2017 in Benin rural area. METHODS: A prospective longitudinal, cluster-randomized, controlled trial with households as the unit of observation was designed to assess the performance of LifeNet® over a three-year period, using a WHOPES fully recommended LLIN (PermaNet® 2.0) as a positive control. The primary outcomes were the bioassay performance using WHO cone assays and tunnel tests, the insecticide content and physical integrity. RESULTS: At baseline, 100% of LLINs were within the tolerance limits of their target deltamethrin concentrations. By 36 months only 17.3% of LifeNet® and 8.5% of PermaNet® LLINs still were within their target deltamethrin concentrations. Despite these low rates, 100% of both LLINs meet WHO efficacy criteria (≥ 80% mortality or ≥ 95% knockdown or tunnel test criteria of ≥ 80% mortality or ≥ 90% blood-feeding inhibition) after 36 months using WHO cone bio-assays and tunnel tests. The proportion of LLINs in good physical condition was 33% for LifeNet® and 29% for PermaNet® after 36 months. After 36 M the survivorship was 21% and 26% for LifeNet® and PermaNet® respectively. Although both LLINs were well accepted by the population, complaints of side effects were significantly higher among LifeNet® users than PermaNet® ones. CONCLUSION: LifeNet® LLINs did meet WHO criteria for bio-efficacy throughout the study period and were well accepted by the population. This is an important step towards getting a full WHO recommendation for use in malaria endemic countries.


Assuntos
Inseticidas , Praguicidas , Piretrinas , Polipropilenos , Benin , Estudos Prospectivos , Inseticidas/farmacologia , Piretrinas/farmacologia
12.
Sci Rep ; 13(1): 11562, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463968

RESUMO

Lambda-cyhalothrin (LCT) is one of the most frequently utilized pyrethroids. This study aimed to explore the toxic effects of subacute exposure to LCT on the pancreas and the hepatic glucose metabolism in adult male albino rats. 20 rats were equally grouped into; Control group and LCT group. The latter received LCT (61.2 mg/kg b.wt.), orally on a daily basis for 28 days. At the end of experiment, blood samples were collected for the determination of serum glucose and insulin levels. Pancreases were harvested and levels of malondialdehyde (MDA); catalase (CAT); superoxide dismutase (SOD); reduced glutathione (GSH); tumor necrosis factor-α (TNF-α); interleukin-6 (IL-6); nuclear factor erythroid 2-related factor 2 (Nrf2); heme oxygenase 1 (HO-1); and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were assessed. Also, liver samples were analyzed for the activity of glucose metabolism enzymes, glycogen content, and pyruvate and lactate concentrations. Histopathological and immunohistochemical examinations of pancreatic tissues were undertaken as well. Results revealed hyperglycemia, hypoinsulinemia, increased MDA, TNF-α, IL-6, and NF-κB levels, in association with reduced CAT, SOD, GSH, Nrf2, and HO-1 levels in LCT group. Liver analyses demonstrated a clear disturbance in the hepatic enzymes of glucose metabolism, diminished glycogen content, decreased pyruvate, and increased lactate concentrations. Besides, pancreatic islets displayed degenerative changes and ß-cells loss. Immunohistochemistry revealed diminished area percentage (%) of insulin and Nrf2 and increased TNF-α immunoreaction. In conclusion, subacute exposure to LCT induces pancreatic toxicity, mostly via oxidative and inflammatory mechanisms, and dysregulates hepatic glucose metabolism in albino rats.


Assuntos
Insulinas , Piretrinas , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Piretrinas/farmacologia , Superóxido Dismutase/metabolismo , Pâncreas/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Estresse Oxidativo
13.
J Econ Entomol ; 116(4): 1321-1328, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364569

RESUMO

We investigated insecticide resistance profiles of field populations of the German cockroach, Blattella germanica (L.), collected from central regions of Thailand. Seven strains (PW, RB, MTH, MTS, TL, AY, and SP) were evaluated with diagnostic doses (DD; 3 × LD95 generated from a susceptible strain) of deltamethrin, fipronil, and imidacloprid using topical assays and compared with a susceptible strain (DMSC). Results showed fipronil (2-27% mortality), deltamethrin (16-58% mortality), and imidacloprid (15-75% mortality) resistance in the field strains. Synergism studies with piperonyl butoxide (PBO) and S,S,S-tributyl phosphorotrithioate (DEF) in combination with the DD of insecticides significantly increased (P < 0.05) mortality of the test insects of the field strains suggesting the involvement of P450 monooxygenase and esterase pathways of detoxification. Gel bait evaluations demonstrated that all field-collected strains were resistant to Maxforce Forte (0.05% fipronil), Maxforce Fusion (2.15% imidacloprid), and Advion Cockroach Gel Bait (0.6% indoxacarb) with mean survival times ranging from 1.87-8.27, 1.77-11.72, and 1.19-3.56 days, respectively. Molecular detection revealed that the Rdl mutation was completely homozygous in all field-collected strains except in the PW strain. Field-collected strains were screened for 3 voltage-gated sodium channel (VGSC) mutations associated with pyrethroid resistance. The L993F mutation was present in 5 strains, but no C764R and E434K mutations were detected.


Assuntos
Blattellidae , Baratas , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas , Tailândia , Piretrinas/farmacologia , Inseticidas/farmacologia
14.
Pest Manag Sci ; 79(10): 3642-3655, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183172

RESUMO

BACKGROUND: Pathogens that reproduce or develop in mosquitoes can transmit several diseases, endanger human health, and overwhelm health systems. Synthetic pyrethroids are the most widely used insecticides against adult mosquitoes, but their widespread use has led to resistance. The adenosine triphosphate (ATP)-binding cassette (ABC) transporters are involved in the resistance monitoring of insects, but their role and underlying mechanisms in insecticide resistance have not been fully elucidated. In the present study, we identified ABC transporter genes in Culex pipiens and investigated their role in the development of insecticide resistance. RESULTS: We identified 63 ABC transporter genes in Cx. pipiens and classified them as per the ABC transporter subfamilies. We also performed phylogenetic analysis. The knockdown rate of the mosquitoes orally fed with the ABC transporter inhibitor verapamil increased after deltamethrin treatment compared with that of the control group. Several genes from the ABCB, ABCC, and ABCG subfamilies were highly expressed in resistant mosquitoes. Immunofluorescence analysis revealed that ABCG6032427 was expressed in the head, chest, abdomen, wings, and legs, and the expression was the highest in the legs. Subsequently, knockdown of ABCG6032427 using RNA interference (RNAi) increased the sensitivity of the mosquitoes to deltamethrin, and scanning and transmission electron microscopy revealed that ABCG6032427 knockdown reduced cuticle thickness and the cuticle became loose and irregular. CONCLUSIONS: ABCG6032427 may modulate cuticle thickness and structure, thus play an important role in the development of deltamethrin resistance in mosquitoes. Thus, it could be a potential target for deltamethrin resistance management in Cx. pipiens. © 2023 Society of Chemical Industry.


Assuntos
Culex , Piretrinas , Animais , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Filogenia , Piretrinas/farmacologia , Piretrinas/metabolismo
15.
Pestic Biochem Physiol ; 193: 105458, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248001

RESUMO

Mosquito-borne diseases are a significant threat to human health. The frequent and repetitive application of insecticides can result in the selection of resistant mosquito populations leading to product failures for reducing community disease transmission. It is important that new interventions are discovered and developed for reducing mosquito populations and, in turn, protecting human health. Plant essential oils are promising chemical interventions for reducing mosquito populations. The myrtle family, Myrtaceae, has numerous species to be studied as potential bioinsecticides. Here, we combined toxicological, biochemical, and neurophysiological approaches to provide evidence for cajeput oil and terpene constituents to elicit bioinsecticidal activity to pyrethroid-susceptible and -resistant Aedes aegypti. We show cajeput oil terpenes to enhance cAMP production, increase ACh levels, inhibit in vivo and in vitro AChE activity, and disrupt spike discharge frequencies of the mosquito CNS. This study presents the first report on the bioinsecticidal activity of cajeput oil terpenes to pyrethroid-susceptible and -resistant mosquitoes and provides comparative data for the octopaminergic system as a putative molecular target for the bioinsecticides with implications for resistance management.


Assuntos
Aedes , Inseticidas , Piretrinas , Animais , Humanos , Piretrinas/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores
16.
Parasitol Int ; 95: 102749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36898498

RESUMO

Malaria vector control relies on the use of insecticides for indoor residual spraying and long-lasting bed nets. However, insecticide resistance to pyrethroids among others, has escalated. Anopheles funestus, one of the major African malaria vectors, has attained significant levels of resistance to pyrethroids. Overexpressed P450 monooxygenases have been previously identified in pyrethroid resistant An. funestus. The escalating resistance against conventional insecticides signals an urgent need for identification of novel insecticides. Essential oils have gained recognition as promising sources of alternative natural insecticides. This study investigated six essential oil constituents, farnesol, (-)-α-bisabolol, cis-nerolidol, trans-nerolidol, methyleugenol, santalol (α and ß isomers) and essential oil of sandalwood, for the adulticidal effects against pyrethroid-resistant An. funestus strain. The susceptibility against these terpenoids were evaluated on both pyrethroid-susceptible and resistant An. funestus. Furthermore, the presence of overexpressed monooxygenases in resistant An. funestus was confirmed. Results showed that both the pyrethroid-susceptible and resistant An. funestus were susceptible to three EOCs; cis-nerolidol, trans-nerolidol and methyleugenol. On the other hand, the pyrethroid-resistant An. funestus survived exposure to both farnesol and (-)-α-bisabolol. This study however does not show any direct association of the overexpressed Anopheles monooxygenases and the efficacy of farnesol and (-)-α-bisabolol. The enhanced activity of these terpenoids against resistant An. funestus that has been pre-exposed to a synergist, piperonyl butoxide, suggests their potential effectiveness in combination with monooxygenase inhibitors. This study proposes that cis-nerolidol, trans-nerolidol and methyleugenol are potential agents for further investigation as novel bioinsecticides against pyrethroid-resistant An. funestus strain.


Assuntos
Anopheles , Inseticidas , Malária , Óleos Voláteis , Piretrinas , Animais , Inseticidas/farmacologia , Piretrinas/farmacologia , Óleos Voláteis/farmacologia , Farneseno Álcool/farmacologia , Controle de Mosquitos , Mosquitos Vetores , Oxigenases de Função Mista
17.
J Agric Food Chem ; 71(13): 5230-5239, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36943249

RESUMO

Aryl hydrocarbon receptor (AhR) enhances insect resistance to insecticides by regulating the detoxification network. Our previous studies have confirmed that overexpressions of cytochrome P450 monooxygenases (P450s) and glutathione S-transferases (GSTs) are involved in lambda-cyhalothrin resistance in Cydia pomonella. Here, we report that CpAhR regulates the expression of GST and P450 genes, thus conferring resistance. Expression patterns indicated that the expression of CpAhR was highly induced by lambda-cyhalothrin exposure and upregulated in a lambda-cyhalothrin-resistant population. RNA interference (RNAi) of CpAhR decreases the expression of key resistance-related genes (CpGSTe3, CpCYP9A121, and CpCYP9A122) and the activity of the GST enzyme, reducing the tolerance to lambda-cyhalothrin. Furthermore, ß-naphthoflavone, a novel agonist of AhR, was first proven to be effective in increasing CpAhR expression and larval tolerance to lambda-cyhalothrin. These results demonstrate that CpAhR regulates the expression of key detoxifying genes and GST activity, resulting in the development of resistance to lambda-cyhalothrin in C. pomonella.


Assuntos
Inseticidas , Mariposas , Piretrinas , Animais , Receptores de Hidrocarboneto Arílico/genética , Piretrinas/farmacologia , Piretrinas/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Mariposas/metabolismo , Nitrilas/farmacologia , Nitrilas/metabolismo , Transferases , Glutationa , Resistência a Inseticidas/genética
18.
Ecotoxicol Environ Saf ; 251: 114547, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680990

RESUMO

Cypermethrin (CYP), a synthetic type II pyrethroid pesticide, is extensively used to control pests in industrial, domestic, and agricultural environments. However, its indiscriminate use leads to a potential threat to aquatic organisms. Although several reports focussed on developmental toxicity effects, a concise study combining cardiotoxicity along with Na+/K+-ATPase activity and molecular docking of developmental proteins with CYP was lacking. This present study was designed to address this gap to comprehend the impact of CYP exposure (0, 25, 100 and 200 µg/L) on embryonic zebrafish. As a result, CYP delayed the hatching rate, reduced heart rate, increased mortality rate and induced numerous morphological abnormalities. Subsequently, CYP induced oxidative stress in treated zebrafish embryos with the concomitant increase in antioxidant enzymes (SOD and CAT) and malondialdehyde production. In addition, an alteration in AChE, NO content and Na+/K+-ATPase activity was observed, suggesting a disruption in cardiac development and ion regulation. Furthermore, AO staining showed notable apoptotic cells which are supported by alteration in apoptosis-related gene expressions. Moreover, to explore the putative targets of CYP, computational docking with developmental proteins (WNT3A, WNT8A, GATA-4, Nkx 2-5 and ZHE1) showed strong interactions and binding. Taken together, our findings provide a better understanding of assessing the ecotoxicological risk information and the mode of action underlying the development of teleost fishes following CYP exposure. Meanwhile, the pioneering nature of this study is to emphasize the future use of Na+/K+-ATPase activity as a potential toxicity biomarker and in silico molecular docking studies to complement developmental toxicity findings.


Assuntos
Piretrinas , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Simulação de Acoplamento Molecular , Piretrinas/farmacologia , Estresse Oxidativo , Adenosina Trifosfatases/metabolismo , Embrião não Mamífero
19.
Gene ; 853: 147085, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36464172

RESUMO

Translationally controlled tumor protein (TCTP) is a growth and development related protein found in almost all eukaryotes and can be involved in a variety of cellular life activities. Our previous studies found that TCTP is involved in the response of Drosophila Kc cells to deltamethrin (DM) stimulation, and it may be a candidate gene related to DM stress. Therefore, we would further investigate the functions of TCTP and its mechanism under DM stress. The qPCR results showed that the expression level of Drsl1 increasing first and then decreasing with the change of DM concentration and treatment duration. The optimal concentration was 20 ppm and the optimal time was 24 h. qPCR and WB results together showed that the expression levels of TCTP and Drsl1 were positively correlated. The flow cytometry showed the expression levels of TCTP and Drsl1 in deltamethrin-stressed cells are related to apoptosis. The apoptosis rate reached the highest level in the cells with simultaneous interference of both genes. Taken together, our data mainly suggest that TCTP interacts with Drsl1 in response to DM stress in Drosophila Kc cells, which helps to investigate the mechanisms of DM toxicity and the mechanisms by which insects develop resistance to it.


Assuntos
Drosophila , Piretrinas , Animais , Drosophila/genética , Drosophila/metabolismo , Piretrinas/farmacologia , Apoptose , Nitrilas/farmacologia , Biomarcadores Tumorais/metabolismo
20.
Artigo em Chinês | MEDLINE | ID: mdl-38604681

RESUMO

OBJECTIVE: To investigate the level of deltamethrin resistance and mutation sites in the sodium iron channel gene in Rhipicephalus microplus in Huaihua City, Hunan Province, and to examine the correlation between deltamethrin resistance and mutation sites in the sodium iron channel gene in Rh. microplus. METHODS: Rh. microplus was sampled from multiple yellow cattle farms in Huaihua City, Hunan Province from June to September 2022, and the level of resistance to deltamethrin was determined in ticks using the adult immersion test. The sodium iron channel domain III gene was amplified in deltamethrin-resistant and wild-type Rh. microplus using PCR assay. Following sequencing and sequence alignment, mutation sites were detected in bases. The sodium iron channel domain III gene in Rh. microplus was translated, and the signal peptide, transmembrane domain, and phosphorylation and glycosylation sites were detected in amino acid sequences. The tertiary structures of the sodium iron channel domain III protein of deltamethrin-resistant and wild-type Rh. microplus were deduced and compared, and the association be tween mutation sites in bases and resistance to deltamethrin was examined in Rh. microplus according the level of deltamethrin resistance, sequence alignment and protein tertiary structure. RESULTS: The median (LC50) and 95% lethal concentrations (LC95) of deltamethrin were 121.39 mg/L and 952.61 mg/L against Rh. microplus, with a resistance factor of 9.24 and level II resistance. The sequence of the sodium ion channel domain III gene was 1 010 bp in size, and mutation sites were detected in two neighboring bases in the sequence of the sodium ion channel domain III gene in deltamethrin-resistant Rh. microplus. Although no signal peptides were found in the sodium iron channel domain III protein of deltamethrin-resistant or wild-type Rh. microplus, 6 trans-membrane domains, 42 phosphorylation sites and 8 glycosylation sites were identified, with a significant difference in the tertiary structure of the sodium iron channel domain III protein between deltamethrin-resistant and wild-type Rh. microplus. CONCLUSIONS: Level II resistance to deltamethrin is detected in Rh. microplus in Huaihua City, Hunan Province, and two mutation sites that correlate with the emergence of deltamethrin resistance are identified in the sequence of the sodium iron channel domain III gene in deltamethrin-resistant Rh. microplus.


Assuntos
Nitrilas , Piretrinas , Rhipicephalus , Animais , Bovinos , Rhipicephalus/genética , Piretrinas/farmacologia , Mutação , Canais de Sódio/genética , Sódio , Resistência a Inseticidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA